Case Studies
April 8, 2024

Identifying Customer-Supplier Ties in Regulatory Filings

Inferess, a supply chain analytics startup, leveraged AI to identify customer-supplier relationships from SEC filings, enhancing investment decision-making. Automated data labeling techniques helped achieving a production-grade model 15x faster with an 11% accuracy improvement, highlighting the importance of data quality over model complexity.

Identifying Customer-Supplier Ties in Regulatory Filings

Low-code tools are going mainstream

Purus suspendisse a ornare non erat pellentesque arcu mi arcu eget tortor eu praesent curabitur porttitor ultrices sit sit amet purus urna enim eget. Habitant massa lectus tristique dictum lacus in bibendum. Velit ut viverra feugiat dui eu nisl sit massa viverra sed vitae nec sed. Nunc ornare consequat massa sagittis pellentesque tincidunt vel lacus integer risu.

  1. Vitae et erat tincidunt sed orci eget egestas facilisis amet ornare
  2. Sollicitudin integer  velit aliquet viverra urna orci semper velit dolor sit amet
  3. Vitae quis ut  luctus lobortis urna adipiscing bibendum
  4. Vitae quis ut  luctus lobortis urna adipiscing bibendum

Multilingual NLP will grow

Mauris posuere arcu lectus congue. Sed eget semper mollis felis ante. Congue risus vulputate nunc porttitor dignissim cursus viverra quis. Condimentum nisl ut sed diam lacus sed. Cursus hac massa amet cursus diam. Consequat sodales non nulla ac id bibendum eu justo condimentum. Arcu elementum non suscipit amet vitae. Consectetur penatibus diam enim eget arcu et ut a congue arcu.

Vitae quis ut  luctus lobortis urna adipiscing bibendum

Combining supervised and unsupervised machine learning methods

Vitae vitae sollicitudin diam sed. Aliquam tellus libero a velit quam ut suscipit. Vitae adipiscing amet faucibus nec in ut. Tortor nulla aliquam commodo sit ultricies a nunc ultrices consectetur. Nibh magna arcu blandit quisque. In lorem sit turpis interdum facilisi.

  • Dolor duis lorem enim eu turpis potenti nulla  laoreet volutpat semper sed.
  • Lorem a eget blandit ac neque amet amet non dapibus pulvinar.
  • Pellentesque non integer ac id imperdiet blandit sit bibendum.
  • Sit leo lorem elementum vitae faucibus quam feugiat hendrerit lectus.
Automating customer service: Tagging tickets and new era of chatbots

Vitae vitae sollicitudin diam sed. Aliquam tellus libero a velit quam ut suscipit. Vitae adipiscing amet faucibus nec in ut. Tortor nulla aliquam commodo sit ultricies a nunc ultrices consectetur. Nibh magna arcu blandit quisque. In lorem sit turpis interdum facilisi.

“Nisi consectetur velit bibendum a convallis arcu morbi lectus aecenas ultrices massa vel ut ultricies lectus elit arcu non id mattis libero amet mattis congue ipsum nibh odio in lacinia non”
Detecting fake news and cyber-bullying

Nunc ut facilisi volutpat neque est diam id sem erat aliquam elementum dolor tortor commodo et massa dictumst egestas tempor duis eget odio eu egestas nec amet suscipit posuere fames ded tortor ac ut fermentum odio ut amet urna posuere ligula volutpat cursus enim libero libero pretium faucibus nunc arcu mauris sed scelerisque cursus felis arcu sed aenean pharetra vitae suspendisse ac.

Problem

Inferess, a supply chain analytics startup based in Silicon Valley, wanted to use AI to detect customer supplier relationships between companies in SEC filings. The goal is to help investors make informed decisions on a company and its suppliers, instead of deciding on a given company in isolation.

AI infers customer supplier relationsjip
Author's illustration. All rights reserved.

Approach

We used topic modeling, active learning, the teacher-student paradigm, and the AI-assisted label correction to automate the data labeling and improve accuracy.

Author's illustration. All rights reserved.

Before

The client hired a data labeling company and gave them instructions on how to label the sentences. After 4 weeks, the client had a set of 4.5k labeled examples at his disposal. iSemantics team used this labeled data to BERT, an advanced AI model.

The model scored 80% accuracy.

After

Our team used automated data labeling techniques to improve data labeling accuracy.

Topic modeling, active learning, and the teacher-student paradigm reduced the number of labeled examples to only 300 instead of 4.5K while using the same underlying model; BERT.

The AI-assisted label correction improved accuracy to 91%.

Results

11% accuracy improvement, 15x faster application development to build a production-grade model.

The result was due to Data Improvement, not Model Improvement.

To learn more about automated data labeling techniques, read the full article here.